Low Rank Symmetric Tensor Approximations
نویسندگان
چکیده
منابع مشابه
Tensor Regression Networks with various Low-Rank Tensor Approximations
Tensor regression networks achieve high rate of compression of model parameters in multilayer perceptrons (MLP) while having slight impact on performances. Tensor regression layer imposes low-rank constraints on the tensor regression layer which replaces the flattening operation of traditional MLP. We investigate tensor regression networks using various low-rank tensor approximations, aiming to...
متن کاملSymmetric Tensors and Symmetric Tensor Rank
A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them being symmet...
متن کاملGeneralized Low-Rank Approximations
We study the frequent problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low rank approximation problems, which, unlike simple matrix factorization problems, do not admit a closed form solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstra...
متن کاملWeighted Low-Rank Approximations
We study the common problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low-rank approximation problems, which, unlike their unweighted version, do not admit a closedform solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstrate the utility ...
متن کاملLow-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2017
ISSN: 0895-4798,1095-7162
DOI: 10.1137/16m1107528